Развитие логического мышления на уроках математики

На современном этапе развития общества наша страна находится в сложной ситуации, переживает трудные времена. Общество стоит на пороге новой идеологии, нового строя и новой политики. Меняется жизнь: претерпевают изменения её социальная и нравственная сферы. В связи с этим возникает много проблем, какая должна быть экономика, политика, как обеспечить достойный уровень жизни всех граждан государства. Общество не может стоять на месте, оно развивается, и для прогресса нужны люди свободные, высокообразованные, творческие, обладающие высоким уровнем развития разных видов мышления.

           Одним из важнейших условий построения обучения, которое способствует развитию мыслительной деятельности школьников на уроках математики, является пробуждение их к самостоятельной мысли. Развитие у школьников теоретического сознания и мышления есть следствие того, что соответствующими знаниями, умениями и навыками учащиеся овладевают в форме учебной деятельности. Это овладение теоретическими знаниями происходит в диалоге, дискуссии, в их сознании постоянно функционирует анализ, обобщение, планирование, рефлексия.

      Основные задачи логического развития детей состоят в следующем:

  • воспитать умение самостоятельно применять доступные способы познания (сравнение, измерение, классификацию и др.) с целью освоения зависимостей между предметами, числами;
  • строить простые высказывания о сущности выполненного действия;
  • находить нужный способ выполнения задания, ведущий к результату наиболее экономным путем;
  • активно включаться в коллективную игру, предлагать нестандартные способы решения игровых задач;
  • свободно разговаривать со взрослыми по поводу игр, творческих задач и способов их решения.

       Под логическим мышлением понимается способность и умение ребёнка  самостоятельно производить простые логические действия (анализ, синтез, сравнение, обобщение, конкретизация), а также составные логические операции (построение отрицания, утверждение и опровержение как построение рассуждения с использованием различных логических схем - индуктивной или дедуктивной.

Сравнение – это сопоставление предметов и явлений с целью найти сходство и различие между ними.

Анализ – логический прием, метод исследования, состоящий в том, что изучаемый объект мысленно (или практически ) расчленяется на составные элементы (признаки, свойства, отношения), каждый из которых исследуется в отдельности как часть расчлененного целого.

Синтез – логический прием, с помощью которого отдельные элементы соединяются в целое. Сравнение подготавливает почву для применения аналогии. С помощью аналогии сходство предметов, выявленное в результате их сравнения, распространяется на новое свойство (или новые свойства).

Абстракция – это мысленное выделение существенных свойств и признаков предметов или явлений при одновременном отвлечении от несущественных. Абстракция лежит в основе обобщения.

Обобщение – мысленное объединение предметов и явлений в группы по тем общим и существенным признакам, которые выделяются в процессе абстрагирования. Процессам абстрагирования и обобщения противоположен процесс конкретизации.

Конкретизация – мыслительный переход от общего к единичному, которое соответствует этому общему. В учебной деятельности конкретизировать – значит привести пример.

    Однако не следует думать, что развитое логическое мышление – это природный дар, с наличием или отсутствием которого следует смириться. При организации специальной развивающей работы над формированием и развитием логических приёмов мышления наблюдается значительное повышение результативности этого процесса независимо от исходного уровня развития ребёнка.

   Целесообразнее развивать логическое мышление в русле математических знаний. Математика, как ни одна другая наука даёт возможность глубокого и осмысленного перехода от наглядно-действенного к образному, а потом и к логическому мышлению. Объекты математических умозаключений и принятые в математике правила их конструирования способствуют формированию у индивида умения формулировать чёткие определения обосновывать суждения, развивать логическую интуицию.

   Я работаю по методической теме  «Развитие логического мышления  на уроках математики». Тема является сферой моего методического интереса. Целью работы по данной теме является попытка решить проблемы активизации познавательной деятельности учащихся, воспитания у детей самостоятельности и активности как черт личности, формирование стремления и привычки к трудовому усилию, настойчивости в преодолении трудностей.
   Одной из важнейших задач, ставлю развитие логики мышления, которая бы позволила детям строить умозаключения, приводить доказательства, высказывания, логически связанные между собой; делать вывод, обосновывая свои суждения, и, в конечном счёте, самостоятельно приобретать знания. На своих уроках для развития логического мышления я использую такие задания как: математические игры, кроссворды, ребусы, занимательные вопросы и задачи, задачи – смекалки, логические упражнения и т. д.

   Математика проникает почти во все области деятельности человека, что положительно сказалось на темпе роста научно-технического прогресса. В связи с этим стало жизненно необходимым усовершенствовать математическую подготовку подрастающего поколения.
   В качестве развития познавательных процессов при этом используются различные методы и средства. Наиболее эффективным средством развития логического мышления  школьников выступает игра. Наилучшим образом используются  логико-математические игры, в которых смоделированы математические отношения, закономерности, предполагающие выполнение логических операций.

   В любой творческой деятельности, в учёбе, в труде, в игре, да и просто в жизни – везде внимание, смышлёность, умение логически мыслить – необходимы  человеку, они помогают решать проблемы, находить выход из сложных ситуаций и полезны для здоровья: поддерживают тонус головного мозга, смекалку можно развить, упражняясь в решении занимательных задач, головоломок, разбирая математические игры, шутки и фокусы, то есть любые задания, требующие работы ума.

   Мышление человека, и в частности школьника, наиболее ярко проявляется при решении задач. Любая мыслительная деятельность начинается с вопроса, который ставит перед собой человек, не имея готового ответа на него. Иногда этот вопрос ставят другие люди, но не всегда акт мышления начинается с формулировки вопроса, на который надо ответить, задачи, которую надо решить, с сознания чего-то неизвестного, что надо понять и уяснить. Человек может мыслить с разной степенью обобщённости, в большей или меньшей степени, опираться в процессе мышления на восприятие, представления или понятия. В устном счёте  предлагаю задачи простые на смекалку и на развитие логического мышления. Вычисления в этих задачах должны быть нетрудоёмкими, чтобы не отнимали много времени на уроке, но заставляли думать. При этом развиваются такие приёмы логического мышления, как синтез, аналогия, сравнение, классификация, обобщении, необходимые для интеллектуального роста каждого ребёнка.

   Систематическое использование на уроках математики специальных задач и заданий, направленных на развитие логического мышления, расширяет математический   кругозор школьников и позволяет более уверенно ориентироваться в простейших закономерностях окружающей их действительности и активнее использовать математические знания в повседневной жизни. Анализ литературы по проблеме развития логического мышления  школьников на уроках математики позволяет сделать вывод о том, что  именно этот предмет является основой развития у учащихся познавательных действий, в первую очередь логических.

   Для   формирования логического мышления  используются такие приемы:

1. Приём сравнения предметов. В ходе обучения приему дети должны овладеть следующими умениями:

а)выделение признаков;
б) установление общих признаков;
в) выделение основания для сравнения;
г) сопоставление по данному основанию.

Сравнение может идти

  • по качественным характеристикам (цвет, форма)
  • по количественным характеристикам: больше - меньше, длиннее - короче, выше - ниже и т.д.

Этот приём можно использую на любом этапе урока.

2. Приём анализа и синтеза

Анализ – это мысленное расчленение предмета или явления образующие его части, выделение в нем отдельных частей, признаков и свойств. Синтез – это мысленное соединение отдельных элементов, частей и признаков в единое целое. Используется в основном при решении задач.

3. Приём обобщения.

Умения необходимые для овладения этого приёма:

  1. Относить конкретный объект к заданному взрослым классу и, наоборот, конкретизировать общее понятие через единичные (действие отнесения),
  2. Группировать объекта на основе самостоятельно найденных общих признаков и обозначать образованную группу словом (действия обобщения и обозначения) группировку в уме.

Учащиеся мысленно объединяют предметы и явления в группы по тем общим и существенным признакам, которые выделяются в процессе абстрагирования.

 

4. Приём классификации.

Это мысленное распределение предметов на классы в соответствии с наиболее существенными признаками. Для проведения классификации необходимо уметь анализировать материал, сопоставлять (соотносить) друг с другом отдельные его элементы, находить в них общие признаки, осуществлять на этой основа обобщение, распределять предметы по группам на основании выделенных в них и отраженных в слове – названии группы – общих признаков. Таким образом, осуществление классификации предполагает использование приемов сравнения и обобщения.

5. Закономерность.

Для успешного решения подобных задач необходимо развивать у детей умение обобщать признаки одного ряда и сопоставлять эти признаки с обобщенными признаками объектов второго ряда. В процессе выполнения этих операций и осуществляется поиск решения задачи. Важно обратить внимание на развитие у ребенка умения обосновывать свое решение, доказывать правильность или ошибочность этого решения, выдвигать и проверять собственные предположения (гипотезы).

Заключение

   Важнейшей задачей математического образования является вооружение учащихся общими приемами мышления, пространственного воображения, развитие способности понимать смысл поставленной задачи, умение логично рассуждать, усвоить навыки алгоритмического мышления. Каждому важно научиться анализировать, отличать гипотезу от факта, отчетливо выражать свои мысли, а с другой стороны - развить воображение и интуицию (пространственное представление, способность предвидеть результат и предугадать путь решения). Именно математика предоставляет благоприятные возможности для воспитания воли, трудолюбия,  настойчивости в преодолении трудностей, упорства в достижении целей. Основной целью математического образования должно быть развитие умения математически, а значит, логически и осознанно исследовать явления реального мира. Реализации этой цели может и должно способствовать решение на уроках математики различного рода нестандартных логических задач. Поэтому использование учителем  этих задач на уроках математики является не только желательным, но даже необходимым элементом обучения математике.